.基础研究.

机械应力调控软骨细胞炎症反应中长链 非编码 RNA 的机制研究

汪立梅 张家明 吕正涛 向威 王胜洁 吴颖星 张津铭 郭风劲 许涛

【关键词】 软骨细胞; 机械应力; 自噬; MEG3 基金项目;国家自然科学基金(81371915, 81572094)

Mechanical strain regulates inflammatory response through the expression of LncRNA-MEG3 Wang Limei^{*}, Zhang Jiaming, Lu Zhengtao, Xiang Wei, Wang Shengjie, Wu Yingxing, Zhang Jinming, Guo Fengjing, Xu Tao. ^{*} Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China

Corresponding author: Xu Tao, Email: rehabcc@163.com

[Abstract] Objective To explore the mechanism by which mechanical strain regulates the inflammatory responses of chondrocytes. Methods Chondrocytes were harvested from newborn Sprague-Dawley rats and cultured in vitro. The chondrocytes were subjected to 2000 μ strain or 5000 μ strain mechanical strain at a frequency of 1 Hz for 2 h. Real-time PCR and western blotting were used to detect the expression of collagen type II (Col-2), matrix metalloproteinase (MMP13), and autophagy marker proteins LC3 and Beclin-1. The expression of LncRNA-MEG3 was detected simultaneously. Immunofluorescence was used to detect the expression of LC3 and Beclin-1 after real-time PCR when LncRNA-MEG3 had been silenced by si-RNA. Results The expression of the Col-2 and LC3 genes was significantly up-regulated in IL-1 β -treated chondrocytes subjected to 2000 μ strain mechanical strain. The level of the autophagy marker protein LC3 II / I in the strained group was significantly higher than that in the control group. Immunofluorescence staining showed that the expression of LC3 in the 2000 μ strain group was significantly higher than in the control group. Immunofluorescence staining showed that the expression of LC3 in the 2000 μ strain group was significantly higher than in the control group. Immunofluorescence staining showed that the expression of LC3 in the 2000 μ strain group was significantly higher than that in the control group, while in the 5000 μ strain group it was significantly lower. The expression of LC3 was significantly higher than that in the control group, while in the 5000 μ strain group it was significantly lower. The expression of LC3 was significantly increased after silencing LncRNA-MEG3 using si-RNA. Conclusion Mechanical strain regulates the autophagy of chondrocytes in an inflammatory environment by regulating the expression of LncRNA-MEG3.

[Key words] Chondrocytes; Mechanical strain; Autophagy; LncRNA-MEG3

Fund program: National Natural Science Foundation of China (81371915, 81572094)

作者单位:430030 武汉,华中科技大学同济医学院附属同济医院康复科(汪立梅、许涛、王胜洁),骨科(张家明、吕正涛、 向威、吴颖星、张津铭、郭风劲)

通信作者:许涛, Email: rehabcc@163.com

DOI:10.3760/cma.j.issn.0254-1424.2017.02.002

骨关节炎(osteoarthritis)是在力学、生物学等多因 素影响下,关节软骨、细胞外基质和软骨下骨正常退变 与合成失去平衡的结果^[1]。在这众多因素中,力学是 改变关节结构、影响关节功能的主要因素^[2]。临床上 针对骨关节炎的保守治疗方法包括药物治疗、手法治 疗及运动疗法等^[34]。国际骨关节炎研究会推荐运动 疗法为膝关节炎保守治疗的核心方法^[3]。

长链非编码 RNA(long noncoding RNA, LncRNA) 是一类长度多于 200 个碱基, 无或少有编码蛋白能力 的 RNA^[5]。MEG3(maternally expressed gene 3)是母系 表达的一种长链非编码 RNA, 也是抑制肿瘤细胞增殖 的抑癌基因^[6]。自噬(autophagy)是在细胞发育过程 平衡能量供给、应对营养匮乏的自我分解过程^[7]。下 调 MEG3 表达能促进膀胱癌细胞自噬及肿瘤细胞增 殖^[8], 因此本研究推测机械应力可能通过影响 MEG3 表达, 从而调控炎症环境中软骨细胞自噬水平。

本研究主要探究机械应力对软骨细胞炎症反应过 程中自噬的影响,以明确在力学环境下 MEG3 在软骨 细胞炎症反应中的作用,并从细胞以及分子水平探究 运动疗法在骨关节炎康复过程中的作用机制。

材料与方法

一、实验材料

新生 Sprague-Dawley(SD)大鼠购于华中科技大学 同济医学院实验动物中心, RIPA 裂解液、BCA 蛋白定 量试剂盒购于武汉博士德生物工程有限公司, II 型胶 原(collagen type II, Col-2)抗体(1:1000稀释)、基质 金属蛋白酶 13(matrixmetalloproteinase 13, MMP13)抗 体(1:1000稀释)及 LC3A/B 抗体(1:2000稀释)等 购于美国 Abcam 公司, 胎牛血清、胰蛋白酶购于美国 Gibco 公司, DMEM/F12 购于美国 HyClone 公司, 总 RNA 提取试剂盒、逆转录试剂盒购于东洋纺上海生物 科技有限公司, Real-time PCR 引物购于北京擎科生物 技术有限公司, mRFP-GFP-LC3 串连荧光蛋白腺病毒 订购于维真生物科技有限公司。

二、实验方法

(一)细胞的分离与培养

新生 SD 大鼠处死后浸泡于 75% 酒精 15 min,于 超净工作台中分离乳鼠四肢,剪下股骨下端及胫骨上 端软骨并剪碎,加入 0.25% 胰酶在 37 ℃水浴中消化 30 min,0.2%的 II 型胶原酶消化 6 h。消化得到的软骨 细胞用含 10% 胎牛血清的 DMEM/F12 重悬,放入培养 箱内培养,当细胞融合度达到 80%~90% 时,用胰酶消 化传代、备用。

(二)细胞干预

1. 构建软骨细胞炎症模型:于六孔板中每孔接种

20 万个软骨细胞,待细胞长满至 75%后于六孔内分别 加入 0,1,2.5,5,10,15 ng/ml 白细胞介素-1β(interleukin-1β, IL-1β), 37 ℃ 孵育 36 h。选取最适宜浓度 IL-1β干预软骨细胞,构建软骨细胞炎症模型。

2. IL-1β联合四点弯曲应力仪干预软骨细胞:将 细胞应变片置于 75%酒精中浸泡过夜,使用前于超净 工作台中用紫外线照射 30 min,取第二代生长良好的 大鼠软骨细胞消化后接种于应变片上,转移至 37℃培 养箱内孵育,待细胞贴壁并融合至 75%后,于培养箱 中连接四点弯曲应力仪(图1)。对 2000 μ strain 组、 5000 μ strain 组及对照组细胞给予相应刺激,于刺激皿 培养基中加入 IL-1β 至 5 ng/ml,对照组细胞应变片置 于刺激皿底层不受应力处,应力组细胞应变片置于刺 激皿有效应力干预处,机械应力参数设置如下:频率 1 Hz,干预时间 2 h。

A:实物图;B:压力刺激皿内部结构图;C:力学原理简图 图1 四点弯曲细胞力学加载仪

3. si-RNA 转染软骨细胞,沉默 MEG3:六孔板中 每孔接种 20 万个软骨细胞,待细胞长满至 75%后进行 siRNA 转染。首先稀释 RNA,取 7.5 μ l siRNA (20 μ mol/L)储存液加入到 90 μ l riboFECTTMCP Buffer(1×)中,轻轻混匀。另外制备混合液,加入 9 μ l riboFECTTMCP Reagent,轻轻吹打混匀,冰上孵育 10 min;加入 1393.5 μ l 新鲜培养基,再加入上述混合 液106.5 μ l,摇匀后置于 37 ℃培养箱中孵育 36 h,通过 Real-time PCR 检测干扰效率。

(三)干预效应的评估方法

1.软骨细胞表型蛋白及自噬标记蛋白检测:经梯 度浓度 IL-1β 干预软骨细胞 36 h 后,分别提取各组 (对照组、1 ng/ml 组、2.5 ng/ml 组、5 ng/ml 组、 10 ng/ml 组、15 ng/ml 组)细胞总蛋白,用 Western Blot 方法检测软骨细胞表型蛋白 Col-2、MMP13 表达; IL-1β联合机械应力干预软骨细胞 2 h 后,分别提取各 组(对照组、2000 μ strain 组、5000 μ strain 组)细胞总 蛋白,用 Western Blot 方法检测自噬标记蛋白 LC3、 Beclin-1及 m-TOR 表达。

Western Blot 具体操作如下:按4:1 比例加入 SDS-PAGE 蛋白上样缓冲液,充分混匀后经沸水浴 5 min。将蛋白样本置于冰上冷却后,各取20 μg加入 10%SDS-PAGE 凝胶中电泳后转膜至孔径0.45 μm的 PVDF 膜上,5%BSA 室温封闭1h,一抗4℃孵育过夜。 将孵育后的 PVDF 膜用 TBST 溶液洗涤10 min×3,室 温孵育二抗1h,TBST 洗涤10 min×3,用 ECL 和凝胶 成像分析系统检测目的蛋白,并用 Image Lab 5.1 软件 处理图像结果。

2.软骨细胞表型基因、自噬相关基因及 LncRNA MEG3 检测:经梯度浓度 IL-1β 干预软骨细胞 36 h 后, 分别提取各组(对照组、1 ng/ml 组、2.5 ng/ml 组、 5 ng/ml组、10 ng/ml 组、15 ng/ml 组)细胞总 RNA,用 Real-time PCR 方法检测软骨细胞表型基因 Col-2、 MMP13 表达;经 IL-1β 联合机械应力干预软骨细胞2 h 后,分别提取各组(对照组、2000 μ strain 组、 5000 μ strain组)细胞总 RNA,用 Real-time PCR 方法 检测自噬相关基因 LC3、Beclin-1及 LncRNA MEG3 表 达;si-RNA 转染软骨细胞 36 h 后,分别提取各组(空白 对照组、阴性对照组、siRNA 组)细胞总 RNA,用 Realtime PCR 方法检测自噬相关基因 LC3、Beclin-1及 LncRNA MEG3 的表达。

Real-time PCR 具体操作如下:干预细胞后提取细胞总 RNA,通过分光光度计检测 RNA 浓度,各个样本取 1 μ g 加入转录试剂盒反应体系,于反转录仪中生成 cDNA,-20 ℃ 保存。逆转录反应条件为:42 ℃反应 15 min;95 ℃反应 5 min;4 ℃反应 30 min。取 0.5 μ l 引物、5 μ l SYBR Green、0.5 μ l 样本和 4 μ l 无 RNA 酶水 配成 10 μ l 反应体系进行实时荧光定量 PCR。反应程 序为:95 ℃ 预变性 2 min;95 ℃ 变性 10 s,55 ℃ 退火 30 s,72 ℃延伸 30 s,该步骤共循环 40 次;随后对 PCR 扩增产物进行目的基因检测。引物序列如下:

目的基因	引物序列
Col2a1	上游 5'-3'TCCTCCGTCTACTGTCCA
MMP13	下游 5'-3'ACTTACCGGTGTGTTTCG
	上游 5'-3'GATACGTTCTTACAGAAGGC
	下游 5'-3'GACAAATCATCTTCATCACC
GAPDH	上游 5'-3'CTGCTCCTCCTGTTCTA
	下游 5'-3'CAATGTCCACTTTGTCAC
LC3	上游 5'-3'ATGCCTCCCAAGAAACCTTC
	下游 5'-3'GTCACATCTCTGCCTAATCC
Beclin-1	上游 5'-3'CCATTACTTACCACAGCCCA
	下游 5'-3'TGAATCTTCGAGAGACACCA
MEG3	上游 5'-3'GAGGGACAAGCAACAAAG
	下游 5'-3'GATGAACACGAGCACAGA

3. 自噬小体检测:IL-1β 联合机械应力干预软骨 细胞后,采用 mRFP-GFP-LC3 串连荧光蛋白腺病毒 转染免疫荧光染色的方法检测自噬小体形成。具体 操作如下:取生长状态良好的软骨细胞接种于应变 片上,将稀释后的 mRFP-GFP-LC3 串连荧光蛋白腺 病毒转染混合液加入培养液中进行病毒转染,36 h 后分别给予各组(对照组、2000 μ strain 组、5000 μ strain 组)细胞相对应的力学干预 2 h,力学干预结束 后立即取出细胞应变片进行固定、封片、激光共聚焦 显微镜拍照分析, Merge 图中黄色斑点即为自噬小 体。

三、统计学分析

本研究所得数据以(*x*±s)表示,应用 SPSS 22.0 版 软件进行数据分析,采用单因素方差分析比较各组间 差异显著性,两组间比较采用 *t* 检验,*P*<0.05表示差异 具有统计学意义。

结 果

一、IL-1β 对软骨细胞表型蛋白及 MMP13 的影响

经梯度浓度 IL-1β 处理大鼠膝关节软骨细胞, Real-time PCR 结果显示 Col-2 表达量与 IL-1β 浓度呈 负相关, MMP13 表达量与 IL-1β 在 2.5~10 ng/ml 浓度 范围内呈正相关, Western Blot 在蛋白水平验证上述结 果。5 ng/ml IL-1β 可降低软骨细胞 COL-2 表达, 并上 调 MMP13 表达(图 2), 表明可以用 5 ng/ml IL-1β 构 建软骨细胞炎症模型。

二、IL-1β 联合机械应力对软骨细胞表型蛋白、自 噬标记蛋白的影响

5 ng/ml IL-1β 联合同频率(1 Hz)不同强度机械 应力干预软骨细胞 2 h,通过实时 PCR 检查发现, 2000 μ strain组软骨细胞 Col-2、LC3 及 Beclin-1 基因 表达量较对照组及 5000 μ strain 组明显上调,差异具 有统计学意义(P<0.05);2000 μ strain 组 Beclin-1 蛋 白表达较对照组及 5000 μ strain 组明显增加,差异具 有统计学意义(P<0.05);5000 μ strain 组 m-TOR 蛋 白表达较对照组及 2000 μ strain 组明显增加,差异具 有统计学意义(P<0.05); 应力组自噬标记蛋白 LC3 II/I相对表达量均较对照组明显减少,差异均具有 统计学意义(P<0.05),具体情况见图 3;免疫荧光染 色显示 2000 μ strain 组 自噬小体形成较对照组及 5000 μ strain 组明显增加,5000 μ strain 组自噬小体 形成较对照组及2000 μ strain组明显减少,差异均具

三、IL-1β 联合机械应力对软骨细胞 MEG3 的影 响

实时PCR检查结果显示, 2000 μ strain组 MEG 3

注:A 为实时 PCR 检测梯度浓度 IL-1β 处理软骨细胞后 Col-2及 MMP13 表达;B 为 Western Blot 检测梯度浓度 IL-1β 处理软骨细胞后 Col-2及 MMP13 表达;C 和 D 为通过条带灰度分析计算 Col-2及 MMP13 相对表达量;与对照组比较,*P<0.05 图 2 梯度浓度 IL-1β 干预对大鼠软骨细胞表型的影响

注:A表示实时 PCR 检测机械应力干预软骨细胞后 Col-2、LC3 及 Beclin-1 表达变化;B表示 Western Blot 检测机械应力干预软骨细胞后 m-TOR、LC3 及 Beclin-1 表达变化;C-E 表示通过条带灰度分析计算 m-TOR、LC3 及 Beclin-1 相对表达量;与对照组比较,*P<0.05 图 3 机械应力对炎症环境中软骨细胞表型及自噬的影响

表达量较对照组明显减少(P<0.05),5000 μ strain组 MEG3 表达量较对照组明显增多(P<0.05),上述结果

提示低强度机械应力抑制 MEG3 表达,高强度机械应力促进 MEG3 表达,具体情况见图 5A。

注:A3 为对照组;B3 为 2000 µ strain 组;C3 为 5000 µ strain 组; 箭头处黄色斑点为自噬小体

图 4 各组软骨细胞自噬标记蛋白比较(免疫荧光染色,×400)

四、si-RNA 转染软骨细胞对 MEG3 及自噬标记蛋白的影响

si-RNA 沉默 MEG3 后,siRNA 组的 MEG3 下调至 阴性对照组的 47.3%(P<0.05),阴性对照组与空白 对照组间差异无统计学意义(P>0.05)(图 5B)。沉 默 MEG3 表达后,LC3 及 Beclin-1 的 mRNA 表达均明 显增强(P=0.0015,P=0.0009)(图 5C),提示 MEG3 与 LC3/Beclin-1 呈负相关,如 MEG 下调,则 LC3/Beclin-1 表达上调,即自噬水平上调。综上结果可知, MEG3 能调控软骨细胞自噬水平,并与自噬水平呈负 相关性。同时本研究得出以下结论:机械应力通过影 响 MEG3 表达来调控软骨细胞自噬水平;低强度机械 应力抑制 MEG3 表达,上调自噬水平。

讨 论

自噬在正常软骨中具有重要保护作用。在椎间盘 终板软骨细胞中,细胞通过自噬减少机械压力诱导的 软骨钙化,延缓椎间盘软骨退变^[9]。在骨关节炎发展 过程中,软骨细胞自噬水平随着年龄增加、骨关节炎进 展而降低^[10-11]。Sasaki等^[12]研究发现,阻断软骨细胞 自噬可使软骨细胞发生骨关节炎样改变。由此可见, 自噬在延缓骨关节炎发展中至关重要。本研究结果发 现,低强度机械应力促进炎症环境中软骨细胞自噬,高 强度机械应力则抑制软骨细胞自噬,推测机械应力能 通过调控软骨细胞自噬水平影响骨关节炎发展。结合 本课题组前期研究成果,即适宜的机械应力可促进软 骨细胞增殖,高强度机械应力则抑制软骨细胞增 殖^[13],我们认为力学刺激可通过调节软骨细胞自噬过 程,促进软骨细胞增殖,延缓骨关节炎发展。

LncRNA 能调控多种细胞活动,如基因表达、染色 质修饰物招募及蛋白质折叠等^[14]。目前已发现多条 LncRNA 调控骨关节炎相关基因表达,如 GAS5^[15]、 H19^[16]及 HOTTIP^[17]。Liu 等^[18]发现 LncRNA 在应力 刺激软骨细胞退化过程中至关重要,有望成为骨关节 炎治疗的新靶点之一。由此可见,LncRNA 与骨关节炎 的发展关系密切,在骨关节炎发展过程中发挥重要调 控作用。本研究结果显示,IL-1β 联合机械应力干预软 骨细胞过程中,低强度机械应力(2000 μ strain)能抑制 MEG3 表达,高强度机械应力(5000 μ strain)则促进其 表达。因此推测机械应力能调控 MEG3 表达,从而影 响骨关节炎发展进程。

在 IL-1β 联合机械应力干预软骨细胞的研究中, 我们还发现 MEG3 与自噬相关蛋白 Beclin-1 的 mRNA 表达量呈负相关性,且在蛋白水平得到了进一步验证, 由此我们推测 MEG3 可调控软骨细胞自噬水平。为进 一步明确 MEG3 与自噬是否相关,本研究通过 siRNA

注:A 为实时 PCR 检测 IL-1β 联合机械应力对 MEG3 表达的影响;B 为实时 PCR 检测 siMEG3 转染软骨细胞对 LncRNA-MEG3 沉默效率的 影响;C 为实时 PCR 检测 siMEG3 转染软骨细胞对 LC3 及 Beclin-1 表达量的影响;与对照组比较, ^aP<0.05

图 5 IL-1β 联合机械应力对软骨细胞 MEG3 表达的影响

• 91 •

沉默 MEG3,发现 LC3 及 Beclin-1 表达量均明显增加。

综上所述,本研究结果提示,机械应力能通过影响 MEG3 表达,调控炎症刺激下软骨细胞自噬水平,延缓 软骨细胞退化,从而抑制骨关节炎病情进展,提示 MEG3 有望成为骨关节炎治疗的新靶点,但其确切调 控机制还有待进一步探究。

参考文献

- Hunter DJ, Felson DT. Osteoarthritis [J]. BMJ, 2006, 332 (7542): 639-642. DOI: 10.1136/bmj.332.7542.639.
- [2] Koelling S, Kruegel J, Irmer M, et al. Migratory chondrogenic progenitor cells from repair tissue during the later stages of human osteoarthritis
 [J].Cell Stem Cell, 2009, 4(4): 324-335. DOI: 10.1016/j.stem.2009. 01.015.
- [3] Mcalindon TE, Bannuru RR, Sullivan MC, et al. OARSI guidelines for the non-surgical management of knee osteoarthritis[J].Osteoarthr Cartilage, 2014, 22(3):363-388.DOI:10.1016/j.joca.2014.01.003.
- [4] Davis AM, Mackay C.Osteoarthritis year in review:outcome of rehabilitation[J]. Osteoarthr Cartilage, 2013, 21 (10): 1414-1424. DOI: 10. 1016/j.joca.2013.08.013.
- [5] Gutschner T, Diederichs S. The hallmarks of cancer: a long non-coding RNA point of view[J].Rna Biol,2012,9(6):703-719.DOI:10.4161/ rna.20481.
- [6] Zhang L, Yang Z, Trottier J, et al.Long noncoding RNA MEG3 induces cholestatic liver injury by interaction with PTBP1 to facilitate shp mR-NA decay[J].Hepatology, 2017, 65(2):604-615. DOI:10.1002/hep. 28882.
- [7] Glick D, Barth S, Macleod KF. Autophagy: cellular and molecular mechanisms[J].J Pathol, 2010, 221(1); 3-12. DOI: 10.1002/path.2697.
- [8] Ying L, Huang Y, Chen H, et al. Downregulated MEG3 activates autophagy and increases cell proliferation in bladder cancer [J]. Mol Biosyst, 2013,9(3):407-411.DOI:10.1039/c2mb25386k.
- [9] Xu HG, Yu YF, Zheng Q, et al. Autophagy protects end plate chondrocytes from intermittent cyclic mechanical tension induced calcification

[J].Bone, 2014, 66: 232-239. DOI: 10.1016/j.bone. 2014.06.018.

- [10] Carames B, Taniguchi N, Otsuki S, et al. Autophagy is a protective mechanism in normal cartilage, and its aging-related loss is linked with cell death and osteoarthritis [J]. Arthritis Rheum, 2010, 62 (3): 791-801.DOI;10.1002/art.27305.
- [11] Sasaki H, Takayama K, Matsushita T, et al. Autophagy modulates osteoarthritis-related gene expression in human chondrocytes [J]. Arthritis Rheum, 2012, 64(6):1920-1928.DOI:10.1002/art.34323.
- [12] Sasaki H, Takayama K, Matsushita T, et al. Autophagy modulates osteoarthritis-related gene expression in human chondrocytes [J]. Arthritis Rheum, 2012, 64(6):1920-1928.DOI:10.1002/art.34323.
- [13] 杨开祥,吴颖星,杜宇,等.周期性单轴牵张力对前软骨干细胞增殖 影响的实验研究[J].骨科,2012,3(2):61-64.DOI:10.3969/j.issn. 1674-8573.2012.02.002.
- [14] Hung T, Chang HY. Long noncoding RNA in genome regulation: prospects and mechanisms [J]. Rna Biol, 2010, 7 (5): 582-585. DOI: 10. 4161/rna.7.5.13216.
- [15] Song J, Ahn C, Chun CH, et al.A long non-coding RNA, GAS5, plays a critical role in the regulation of miR-21 during osteoarthritis[J].J Orthop Res, 2014, 32(12):1628-1635.DOI:10.1002/jor.22718.
- [16] Steck E, Boeuf S, Gabler J, et al. Regulation of H19 and its encoded microRNA-675 in osteoarthritis and under anabolic and catabolic in vitro conditions[J].J Mol Med, 2012, 90 (10): 1185-1195. DOI: 10.1007/ s00109-012-0895-v.
- [17] Kim D, Song J, Han J, et al. Two non-coding RNAs, MicroRNA-101 and HOTTIP contribute cartilage integrity by epigenetic and homeotic regulation of integrin-alpha1 [J]. Cell Signal, 2013, 25 (12): 2878-2887. DOI:10.1016/j.cellsig.2013.08.034.
- [18] Liu Q, Hu X, Zhang X, et al. The TMSB4 Pseudogene LncRNA functions as a competing endogenous RNA to promote cartilage degradation in human osteoarthritis[J].Mol Ther, 2016, 24(10): 1726-1733.DOI: 10.1038/mt.2016.151.

(修回日期:2017-01-12) (本文编辑:易 浩)

·外刊撷英·

Tooth loss and functional capacity

BACKGROUND AND OBJECTIVE Many studies have reported on the relationship between oral health and general health. This study was designed to determine whether an association exists between dental health and a decline in higher-level functional capacity.

METHODS Data were derived from the Japan Gerontological Evaluation Study (JAGES), involving community dwelling adults, 65 years of age or older, who were cognitively independent. A baseline survey was conducted between August of 2010 and January of 2012, with a follow-up conducted between January of 2013 and December of 2013. Subjects were asked about the status of their dental health, including the number of natural teeth that they currently possessed. Higher-level functional capacity was assessed using the Tokyo Metropolitan Institute of Gerontology Index of Competence (TMIG-IC), with covariates including health, and health behavior variables that might be related to the TMIG-IC.

RESULTS Of the respondents, 62,333 were included in the final analysis, with a median follow-up of 707 days. In the adjusted analysis, a multiple linear regression model found a dose response association between tooth loss and decline in TMIG-IC scores.

CONCLUSION This large, population-based, prospective cohort study indicates a dose response association between tooth loss and a decline in higher-level functional capacity over two years.

【摘自:Sato Y, Aida J, Kondo K, et al. Tooth loss and declining functional capacity: a prospective cohort study from the japan gerontological evaluation study. J Am Geriatr Soc, 2016, 64(11): 2336-2342.】