.康复工程.

基于人体步态的假肢膝关节运动控制方法研究

杨洁^{1,2} 徐垠焮^{1,2} 汪晓铭^{1,2} 孙金悦^{1,2} 孟巧玲^{1,2,3} 于坤⁴ 喻洪流^{1,2,3} ¹上海理工大学康复工程与技术研究所,上海 200093;²上海康复器械工程技术研究中心,上 海 200093;³民政部神经功能信息与康复工程重点实验室,上海 200093;⁴北京东方瑞盛假 肢矫形器技术发展有限公司,北京 100041

通信作者:喻洪流,Email:yhl98@ hotmail.com

【摘要】目的 提出一种针对所研发假肢膝关节的平地行走下的控制方法,使其能辅助膝关节截肢的 患者以趋向于健康人的步态行走。方法 在假肢膝关节上放置九轴惯性姿态传感器获取小腿倾斜角度,假肢 连接管处放置压力传感器获取压力,组合两种信号判别步态相位。采用双直线电机分别控制相应针阀与单向 阀配合的油路结构实现膝关节弯曲和伸展阻尼力矩的独立控制。通过直线电机推动针阀改变油路的通流面 积,实现不同速度下膝关节阻尼力矩的控制。测试患者在跑步机上以 2.0、3.6 和 4.2 km/h 的步速行走,通过 RealGait(三维步态与运动分析系统)记录数据。为降低绊倒风险,以摆动期最大膝关节屈曲角度 65°为控制 目标,允许误差为±5°。绝对对称性指标(ASI)<10%为步态良好的评定指标。结论 患者在不同步速的测试 中,患者假肢膝关节屈曲最大角度均在 62°左右, ASI 分别为 3%、6%、8.5%,均<10%,步态对称性良好。大腿 截肢患者表示身体负担有明显减轻。结论 基于人体步态对液压假肢膝关节的阻尼进行实时控制的方法能 够有效改善截肢患者的行走步态。

【关键词】 人体步态; 步态相位; 假肢; 阻尼; 膝关节

基金项目:国家重点研发计划项目(2018YFB1307303);国家自然基金项目(61473193);上海市科委平台 建设项目(15DZ2251700)

Funding: National Key Research and Development Program (2018YFB1307303); National Natural Science Foundation Project (61473193); Shanghai Science and Technology Commission Platform Construction Project (15DZ2251700)

DOI: 10.3760/cma.j.issn.0254-1424.2020.11.018

据 2010 年中国残疾人联合会统计,我国肢体残疾患者约为 2472 万人,其中下肢截肢者约 220 万人^[1]。对于下肢假肢的研 究工作,国内外都进行了长时间的研究^[2]。假肢膝关节作为下 肢假肢中关键部位,它的性能直接影响着患者的日常生活,而 平地状态下的行走最为关键,是假肢膝关节控制实现的最基本 的功能。传统假肢往往伴随着以下几个问题:①步态对称性 差,对肢体残端造成很大压力^[3];②行走能耗大,在行走过程中 容易疲劳;③阻尼不可实时调控,不可跟随截肢者的步速变化。 对此本研究提出一种基于人体步态的假肢膝关节平地行走下 的控制方法,以改善膝关节步态对称性,实现患者良好的生理 步态,减轻患者的身体负担。

机构和分析

一、机械机构设计

该机构(如图1所示)可实现支撑中期利用体重触发锁定 膝关节,防止摔倒。液压阻尼缸主要为支撑期和摆动期提供可 调阻尼,在支撑期提供高阻尼保证支撑期间的稳定性,摆动期 根据步速变化自动调节阻尼,内部设有储能弹簧,在支撑期存 储能量,在摆动早期释放能量。机械最大的膝关节弯曲角度设 为135°。机械内部在膝关节关节处设有经皮带传动的基于霍 尔效应的膝关节角度传感器以测量假肢在运行过程中的膝关 节角度信息;而用于阻尼调控的执行部件包括2个直线步进电 机和数字式光电编码器,分别调整伸展过程对应的针阀开度和 屈曲过程对应的针阀开度,从而调整阻尼,光电编码器位于电 机后部以检测电机运行状态,用以构成电机位置闭环控制来保 证位置精确控制。

1.轴惯性姿态传感器

图1 i-knee 结构图(a)和机械样机图(b)

二、步态分析

一个完整的人体行走步态周期中,下肢共经历了地面支撑 和空中摆动两个阶段^[4],故可将一个完整步态周期分为支撑期 和摆动期,即支撑相和摆动相^[56]。支撑期阶段开始于脚后跟 着地结束于脚前掌离地,阶段时间约为整个步态周期的 60%; 摆动期阶段开始于脚前掌离地结束于脚后跟着地,阶段时间约 为步态周期的 40%。在整个步态周期的运动过程中,可依次标 · 1030 ·

识为脚后跟着地、脚全掌着地、脚后跟离地、脚前掌离地、脚后 跟离地最高处、小腿空中垂直地面等关键状态^[7],如图2所示。

对运动步态进行分析,还需要对整个步态周期的运动学数 据和压力进行分析。区分支撑期和摆动期,可直接利用地面反 作用力来判断,对整个步态周期的地面反作用力进行分析,可 更好地理解步态相位的划分以及在假肢膝关节穿戴过程中患 者容易出现摔倒的时刻,为智能假肢膝关节的控制系统提供科 学依据。地面反作用力(ground reaction force,GRF)由垂直分 力、前后剪切力和内外剪切力共同组成,但相比垂直分力其它 两个剪切力较小,故大多研究的是垂直分力变化。一个完整步 态周期的左右腿垂直地面反作用力曲线如图 3 所示^[7]。

当脚后跟着地时,地面反作用力约为体重的 1.5 倍,是体重 与摆动末期脚后跟着地前加速度所产生冲击力的合作用力,期 间曲线的斜率越大则冲击力发生的越快,如果膝关节处在此时 刻不抵抗该冲击力,则无法保证着地时刻的稳定性进而摔倒。 进入到支撑中期,GRF大小与体重持平;支撑后期,随着脚后跟 离地,GRF 信号开始减小;当脚尖离地时,GRF 为 0;由于摆动期 膝关节在空中摆动,GRF 信号始终为 0。

功能设计与实现

一、步态相位控制方法设计

膝关节良好的跟随性依赖于对步态相位的识别。本研究 在步态相位识别划分过程中,主要使用数据为欧拉角。根据所 旋转轴的不同,欧拉角可分为俯仰角、航偏角和翻滚角^[8]。将 姿态传感器嵌入在主控电路板上,俯仰角可用来描述小腿的倾 斜角度,且该角度输出范围大于小腿正常行走过程中倾斜角度 范围,并经过数据校准处理后,俯仰角的 0°为假肢处于垂直地 面的位置。当全脚掌着地时,假肢膝关节与地面垂直,此时可 得到小腿倾斜角度理论为 0°,当脚后跟离地时,假肢膝关节在 以膝关节处往下做的竖直轴的后方,则小腿倾斜角度为正;当 脚后跟着地时,假肢膝关节在以膝关节处往下做的竖直轴的前 方,则小腿倾斜角度为负。利用该信号可准确快速的区分开支 撑期相位。同时将压力传感器放置在小腿连接管近脚踝处,通 过该传感器测得轴向压力。当脚后跟着地,输出的压力信号为 一个峰值;当全脚掌着地时,压力传感器输出的压力信号表征 患者的体重,但小于脚后跟着地时刻的压力信号;当脚后跟离 地,重心转移到脚尖处,此时传感器输出信号同样出现一个峰 值;当假肢膝关节进入到摆动期时,压力信号输出为 0,可利用 该压力信号快速直观地区分开出支撑期和摆动期。

为避免仅仅使用单独信号进行判断步态相位而引发误操 作的情况,本研究组合以上两种信号来进行步态相位判别。平 地下步态相位控制流程如图4所示,其中伸展阻尼可根据患者 情况进行设定。假肢膝关节采用双电机独立调节膝关节屈曲 运动和伸展运动的阻尼力矩。

图4 假肢膝关节步态相位阻尼控制框图

二、调速方法设计

液压阻尼力随着液压油流动速度的变化呈现出不同的性 质,流速较慢即层流时阻尼与速度呈线性,流速大即湍流时则 阻尼的增大呈非线性。此性质使得不同速度下,膝关节阻尼力 的调整可通过改变液压油通流面积来改变液压油流速制造湍 流,实现阻尼力矩的快速适应与控制。为实现智能膝关节弯曲 和伸展阻尼力矩控制的独立性,采用双直线电机分别控制相应 针阀与单向阀配合的油路结构,通过直线电机推动针阀改变油 路的通流面积,使液压油流速瞬间增大,形成湍流,造成压力损 失,控制上下腔的压差产生阻尼力,从而实现不同速度下膝关 节阻尼力矩的控制。因此,可通过改变液压缸内部屈曲针阀和 伸展针阀的开度值来完成步速的调节,而本研究就是通过控制 直线电机的绝对运行位置来实现针阀开度的设置,又由于针阀 开度值与电机的目标位置值相对应,则找到电机的目标位置值 与步速的对应关系是步速自适应控制的核心。

本研究通过假肢连接管的压力传感器来判别出步态周期,以 步态周期的时间来表征步行速度。建立步速和摆动屈曲过程中针 阀开度的对应关系,当检测到的当前的步行速度,快速驱动电机将 针阀开度运行到指定位置,进而可以实现步速自适应(表1)。

表1 步态周期与步速和阀门开度的对应关系

步态周期时间 (ms)	步速(m/s)	针阀开度 (电机运行步数)
2405	0.5	460
1503	0.8	520
1210	1.0	550
1010	1.2	585
805	1.5	600
672	1.8	615
602	2.0	625

通过对不同步速下步态特征分析,以健康人在不同速度下的摆动过程中,最大膝关节屈曲角度为65°作为控制目标^[8-12], 为知识库中的准确度增加评价标准。若未出现当前的步速的 对应关系,按照最靠近的步速对应的针阀开度来进行调控,然 后进行迭代学习,直到误差在所设定的范围内,并记录该步态 周期下的针阀开度。

膝关节的运动具有重复性的特点,且闭环 P 型迭代学习的 收敛性较好。因此本研究知识库的建立采用的是 P 型迭代学 $习^{[13]}$,其学习律为 U_{k+1}(t)=U_k(t)+L*E_k(t);其中 U_{k+1}(t)为第 k+1 个周期的针阀开度,U_k(t)为第 k 个周期的针阀开度,L 为 比列系数,E_k(t)为设定最大膝关节屈曲角度与第 k 周期摆动期 中最大膝关节屈曲角度的误差。当误差初步收敛到一定程度 即1E_k(t)1<1E_a1时,可认为该误差精度满足控制需求,将得到 的此步速下的针阀开度与当前的步态周期的时间 T 组成具有 对应关系的数据,保存到控制系统的 EEPROM 器件内,之后当 检测到该步态周期时间 T,就可找到对应的针阀开度进行控制 摆动期阻尼。其中该算法中 E_a为通过对健康人步态分析以及 测试实验后所设定的误差阈值。本研究中设定的 E_a为 5°,E_t 为 80 ms,L=0.01 作为系数,可保证系统的收敛性。假肢膝关 节调速过程如图 5 所示。

功能测试

一、评定指标

左右两侧运动对称是人体步态最重要的特点。故本研究 采用绝对对称性指标(absolute symmetry index,ASI)来评估患者 穿戴所研制假肢膝关节的行走步态对称性。ASI的计算公式如 下^[14-15].

$$ASI = \left| \frac{2(X_H - X_P)}{X_H + X_P} \right| * 100\%$$

其中 X_H 为健康腿的单支撑相时间, X_P 为残侧腿的单支撑 相时间, 步态理想对称时 ASI=0, 当 ASI<10%时, 可认为步态对 称性良好^[15]

二、测试结果及分析

为验证所设计的控制系统的实际控制效果,对大腿截肢者 进行穿戴测试。患者男,40岁,身高 175 cm,体重 63 kg,有 3 年 的假肢穿戴经验,身体状况良好。由专业的假肢技师安装调整 本假肢膝关节,以减小装配对行走效果造成的影响。设定跑步 机分别以 2.0、3.6 和 4.2 km/h 三种步速(分别代表慢、中、快)进 行测试,获取假肢膝关节角度和残端髋关节的角度数据,并利 用设备采集记录两侧的膝关节角度数据(如图 6 所示)。

注:图 A 为 2.0 km/h 步速;图 B 为 3.6 km/h 步速;图 C 为 4.2 km/h 步速 图 6 3 种步速下的膝关节角度曲线

测试结果显示慢、中、快三种步速下的最大膝关节角度可 控制在(65±5)°的范围内,说明该假肢膝关节可根据步速的变 化自动调节阻尼来适应步速变化,验证了控制系统有效性。3 种步速下行走步态的 ASI 曲线如图 7 所示。

3种步速下的平均 ASI 分别约为 3%、6% 和 8.5%,都< 10%,说明假肢行走的步态接近健侧的步态,符合实际的功能需 求,验证了控制方案的可行性。补充在平地上进行测试,受试 者以变速行走,采集两侧的步态数据并做出 ASI 的曲线(如图 8 · 1032 ·

所示)。可见,在变速过程中受试者两侧的 ASI 平均在 10% 以 下,再次说明该假肢膝关节的步速自适应功能和假肢穿戴行走 步态具有良好对称性,解决了假肢膝关节步速自适应和步态对 称性的问题,再次验证了本研究提出的控制方案可行。

注:图 A 为 2.0 km/h 步速;图 B 为 3.6 km/h 步速;图 C 为 4.2 km/h 步速 图 7 3 种步速下的步态 ASI 曲线

总结与展望

本研究提出了一种基于人体步态的假肢膝关节在平地行走 状态下的控制方法,研究通过对健康人在平地行走下的步态分 析,并通过传感器测得各个阶段膝关节的伸展角度,搭建的单片 机系统对电机控制,从而控制膝关节中液压缸阀门开度大小,达到 对膝关节的阻尼控制。邀请患者穿戴所研制假肢膝关节进行不同 步速下的行走实验,利用三维步态分析系统采集两侧的运动数据, 绘制 ASI 曲线,平均低于 10%,表明该假肢膝关节辅助患者行走步 态具有良好对称性,验证了假肢膝关节的控制方案的可行性。

总之,对人体下肢运动来讲,膝关节可归纳为一个高度非 线性、时变、强耦合的系统,则智能假肢膝关节系统的研制需要 多个学科交叉的技术,如生物医学工程、信号系统分析、智能控 制理论、传感器技术等多个学科,是一个复杂的人机系统。一 个高性能智能假肢的研制也需要投入大量的时间和人力不断 地进行功能改善。下一步改善控制效果的工作重点是探讨采 用线性加速度来表征步速的可行性,提高瞬间步态的跟随性, 并寻找其它影响步态的特征变量,更加全面地评估分析人体行 走的步态,并纳入控制标准。

参考文献

- [1] 张宁,李剑.动力型智能假肢膝关节的研究进展[J].北京生物医学 工程,2018,37(4):427-432. DOI:10.3969/j.issn.1002-3208.2018. 04.017.
- [2] 胡生员.智能人工腿控制器的算法设计及步速测量模块的研制 [D].湖南:中南大学,2003. DOI:10.7666/d.y672601.
- [3] Kaufman KR, Frittoli S, Frigo CA. Gait asymmetry of transfemoral amputees using mechanical and microprocessor-controlled prosthetic knees[J].Clin Biomech, 2012, 27(5):460-465. DOI:10.1016/j.clinbiomech.2011.11.011.
- [4] 黄瑞.基于虚拟样机技术的 PRMI 外骨骼机器人步态仿真研究 [D].四川:电子科技大学,2013. DOI:10.7666/d.D762902.
- [5] 李光耀.基于角速度传感器的人体下肢运动识别[D].河北:河北 工业大学,2013.DOI:10.7666/d.D465684.
- [6] 赵威钊.基于加速度传感器的人体下肢假肢步态分析[D].河北: 河北工业大学,2013.DOI:10.7666/d.D466200.
- Zlatnik D, Steiner B, Schweitzer G. Finite-state control of a transfemoral (TF) prosthesis [J].IEEE T Contr Syst T, 2002, 10(3):408-420. DOI:10.1109/87.998030.
- [8] 李文浩,葛云,陈颖.基于欧拉角的关节活动度测量系统[J].电子测量技术,2016,39(7):132-135. DOI: 10.3969/j.issn.1002-7300. 2016.07.028.
- [9] 耿艳利.下肢运动模式识别及动力型假肢膝关节控制方法研究 [D].河北:河北工业大学,2012. DOI:10.7666/d.D464745.
- [10] 马绍兴,王人成,沈强.步态模式对人体髋膝踝关节运动协调关系 的影响[J].中国康复医学杂志,2015,30(12):1257-1261. DOI:10. 3969/j.issn.1001-1242.2015.12.012.
- [11] Herr H, Wilkenfeld AJL. User-adaptive control of a magnetorheological prosthetic knee[J]. Industrial Robot, 2003, 30 (1): 42-55. DOI: 10. 1108/01439910310457706.
- [12] 王劲松,王令军,王婷,等.不同步速下人体步态规律的测量与研究
 [J].传感器与微系统,2008,27(9):43-49. DOI:10.3969/j.issn.
 1000-9787.2008.09.014.
- [13] 施建礼,宋召青,王文才.非正则线性系统的闭环 P 型迭代学习控制[J]. 计算机仿真, 2003, 20(10): 71-73. DOI: 10.3969/j. issn. 1006-9348.2003.10.024.
- [14] 耿春亚,马军,郭忠武,等.关于正常青年人步态竖直方向力的检测与统计分析[J].航天医学与医学工程,2003,16(5):364-367. DOI:10.3969/j.issn.1002-0837.2003.05.013.
- [15] 王人成,张美芹.人体步态时相对称性评价指标的对比研究[J].中 国康复医学杂志,2011,26(10):957-959. DOI:10.3969/j.issn. 1001-1242.2011.10.015.

(修回日期:2020-09-28) (本文编辑:汪 玲)